

Created by:

National Resource Centre for EHR Standards,

Centre for Development of Advanced Computing (C-DAC), Pune, India

Published: September 2024

Implementation Guide for Adoption
of FHIR in ABDM and NHCX

National Resource Centre for EHR Standards (NRCeS)
© Centre for Development of Advanced Computing, Pune Page 2 of 24

TABLE OF CONTENTS

Introduction __ 4

Brief Introduction to FHIR __ 4

Scope __ 4

Key Concepts of FHIR ___ 5

• Resource __ 5

• Bundle __ 5

• Profile and Extension ___ 5

• Terminology ___ 5

• Validation ___ 5

• Interoperability __ 5

• Modularity and Scalability ___ 5

• Exchange Paradigm ___ 5

Resource ___ 6

Key Part of Resource __ 7

Data types __ 7

Key datatypes __ 7

FHIR Paradigm __ 8

Bundle ___ 9

Use of Bundle with ‘type’ as ‘Document’ ___________________________________ 9
How it works __ 9
Example Use Case __ 9

Use of Bundle with ‘type’ as ‘Collection’ ____________________________________ 9
Example Use Case __ 9

Key Elements of a FHIR Bundle resource _________________________________ 10

FHIR Implementation Guide __ 10

FHIR Implementation Guide for Ayushman Bharat Digital Mission __________ 11

Reading FHIR Profiles __ 11
1. Statistics/References __ 11
2. Differential View __ 11
3. Mandatory Element ___ 11

4. Must Support ___ 11

FHIR Profiles for ABDM ___ 12

FHIR Profiles for NHCX ___ 12

Implementing and Validating FHIR using Java _________________________ 14

HAPI FHIR Library ___ 14

National Resource Centre for EHR Standards (NRCeS)
© Centre for Development of Advanced Computing, Pune Page 3 of 24

Key Features of HAPI FHIR Library ______________________________________ 14
• Complete FHIR Support ___ 14
• Built-in Validators __ 14
• Serialization & Parsing __ 14
• Extensive Resource Coverage __ 14

HAPI FHIR Dependencies ___ 14
• hapi-fhir-structures-r4 __ 14
• hapi-fhir-validation __ 14
• hapi-fhir-validation-resources-r4 ___ 14

Creating FHIR Resources Programmatically ______________________________ 15
Prerequisites ___ 15
Setting Up the Development Environment __ 15
Creating Resource __ 16
Patient Resource in Java and JSON Representation _________________________________ 17
Creating FHIR Bundles Programmatically in ABDM and NHCX _______________________ 17
Creating a Document Bundle for ABDM ___ 17
Creating a Collection Bundle for NHCX ___ 18
Common Pitfalls in Creating FHIR Bundles __ 19

Validating FHIR Resources __ 19
Validation Tools __ 19
Validation Aspects __ 20
Validation Process __ 20

Implementation Reference ___ 23

Annexure: FHIR Bundles utilized by each NHCX API based on specific Use Cases __ 24

National Resource Centre for EHR Standards (NRCeS)
© Centre for Development of Advanced Computing, Pune Page 4 of 24

INTRODUCTION

Intending to build a national digital health ecosystem that provides diverse data

and infrastructure services by leveraging open, interoperable systems, adopting

FHIR in Ayushman Bharat Digital Mission (ABDM) has been a cornerstone of

ABDM's digital healthcare initiatives.

FHIR has been identified as a data structure standard defining health information

structures that represent different health records to achieve continuity of care

along with standard structures defined for claim processing. The adoption of FHIR

in ABDM and NHCX results in enhanced healthcare delivery and fosters innovation

in health services. It streamlines data exchange across different health systems,

leading to better interoperability and more accurate patient records. It also

facilitates real-time access to health information, which can support more timely

and informed decision-making by healthcare providers. FHIR's standardized

protocols streamline claims processing and administrative workflows leading to

faster claim processing and reduced errors.

BRIEF INTRODUCTION TO FHIR

Fast Healthcare Interoperability Resources (FHIR), developed by Health Level

Seven (HL7), is a modern standard designed to streamline the electronic exchange

of healthcare information. By using widely adopted web standards such as

RESTful APIs, XML, and JSON, FHIR provides a flexible framework that simplifies

healthcare data integration and ensures seamless interoperability between

different healthcare systems.

One of the primary goals of FHIR is to simplify healthcare data exchange by

reducing technical barriers. Using familiar internet-based technologies, it allows

real-time sharing of healthcare information through discrete “Resources” such as

patient data, medications, and observations. These modular resources can be

easily combined and extended to suit various healthcare needs, supporting both

data sharing and the development of new applications. FHIR’s standardized

framework promotes interoperability across systems, enabling faster innovation

and more accurate clinical decision-making, ultimately improving patient

outcomes and healthcare delivery.

Refer: Index - FHIR v4.0.1 (hl7.org)

SCOPE

This document provides an overview of FHIR and its usage within the ABDM. It

serves as a reference for understanding FHIR and its adoption in ABDM and NHCX,

outlining how to create and validate FHIR resources using available libraries.

While the approach to implementation may vary based on application

requirements, resources, and scope, this document aims to assist healthcare

https://hl7.org/fhir/R4/index.html

National Resource Centre for EHR Standards (NRCeS)
© Centre for Development of Advanced Computing, Pune Page 5 of 24

stakeholders in integrating interoperable, secure, and standardized healthcare

data exchange solutions effectively within the healthcare ecosystem.

KEY CONCEPTS OF FHIR

• Resource: FHIR is resource-centric, meaning all healthcare-related data is

represented as a set of modular components called "resource." These

resources are the building blocks of FHIR and can represent anything from

a patient, medication, or observation, to complex care plans. Resources can

be combined or extended to suit specific use cases, making FHIR adaptable

to various needs.

• Bundle: FHIR supports the use of Bundle, which is collection of resources

that can be sent or retrieved in a single transaction.

• Profile and Extension: FHIR resources can be customized using profiles

to meet specific implementation needs. Extensions allow adding new data

elements or modifying existing ones without altering the core resource

structure.

• Terminology: FHIR integrates with standardized terminologies such as

SNOMED CT, LOINC, and ICD, allowing consistent use of codes and

classifications for clinical concepts.

• Validation: FHIR provides mechanisms to validate resources against

profiles, ensuring that the data conforms to specific rules and constraints,

improving data quality and consistency across systems.

• Interoperability: FHIR is designed to ensure systems can communicate

seamlessly by providing a standardized data format. It promotes

interoperability between different healthcare systems, enabling them to

share data efficiently.

• Modularity and Scalability: FHIR resources can be used individually or in

combination, which allows incremental adoption. This flexibility ensures

that FHIR can scale from simple to complex healthcare systems.

• Exchange Paradigm: The FHIR exchange paradigm refers to the methods

used for sharing healthcare data between systems, leveraging modern web

standards like RESTful APIs, messaging, and documents. It enables real-

time, secured, and scalable exchange of modular data units called

resources. This approach facilitates seamless interoperability between

healthcare applications, improving data accessibility and patient care.

National Resource Centre for EHR Standards (NRCeS)
© Centre for Development of Advanced Computing, Pune Page 6 of 24

RESOURCE

FHIR resource is a fundamental component of this standard, representing a

specific type of healthcare information in a structured and standardized way. Each

resource represents a distinct type of healthcare data element, such as patient

information, medications, or observations. These resources are structured entities

with defined attributes and properties, which ensure that the data is captured

consistently across different systems. Each resource also includes relationships

with other resources, allowing them to interact and form a comprehensive

representation of a healthcare process. These resources are modular and can be

combined or extended to suit specific clinical workflows, enabling flexibility in

how they are applied in various healthcare settings while maintaining

standardization and interoperability across systems.

Some important resource categories include:

• Clinical Resources: Allergy, Problem, Procedure.

• Administrative Resources: Practitioner, CareTeam, Device, Organization.

• Financial Resources: Claim, Coverage, PaymentNotice.

For a full list of resources, refer: Resource list - FHIR v4.0.1 (hl7.org)

https://hl7.org/fhir/R4/resourcelist.html

National Resource Centre for EHR Standards (NRCeS)
© Centre for Development of Advanced Computing, Pune Page 7 of 24

Key Part of Resource

DATA TYPES

Datatypes define the structure and nature of data elements within resources,

ensuring consistent representation of information across healthcare systems.

They specify how data fields are formatted, such as strings, numbers, or more

complex structures. This standardization is crucial for maintaining data integrity

and enabling seamless data exchange between different healthcare applications

and platforms. By using predefined datatypes, FHIR ensures that both simple and

complex data elements are accurately captured and interpreted, enhancing

interoperability and data consistency across systems.

Key datatypes

• Simple/Primitive Types: Basic data types with a single, indivisible value

like Boolean, integer, string, or date.

• General-purpose Complex Types: Reusable clusters of elements that

represent structured data like Address, HumanName, or Identifier.

• Metadata Types: Used to describe metadata associated with resources.

• Special Purpose Data Types: Types created for specific healthcare-

related use cases, such as Dosage, Reference, and Meta.

National Resource Centre for EHR Standards (NRCeS)
© Centre for Development of Advanced Computing, Pune Page 8 of 24

Refer: Datatypes - FHIR v4.0.1 (hl7.org)

FHIR PARADIGM

FHIR is designed to support a variety of paradigms or approaches to healthcare

data exchange, enabling flexible and interoperable communication between

systems. It combines different data exchange methods such as RESTful APIs,

documents, messages, and services to accommodate various workflows and

requirements in healthcare settings.

• RESTful API: FHIR's most widely used paradigm, where data is exchanged

using standard HTTP operations (GET, POST, PUT, DELETE), making it

efficient and easy to implement.

• Documents: In scenarios where a complete, self-contained set of resources

needs to be transmitted, FHIR supports the use of structured documents

(e.g., discharge summaries).

• Messaging: FHIR supports messaging paradigms, enabling systems to

exchange event-driven data, such as lab results or admission notifications.

• Services: For more complex interactions, FHIR allows for service-oriented

exchanges, and supporting workflows like decision support or scheduling.

These paradigms offer flexibility in how healthcare data is shared and managed,

making FHIR adaptable to a wide range of clinical, administrative, and regulatory

use cases.

Refer: Exchange module - FHIR v4.0.1 (hl7.org)

https://hl7.org/fhir/R4/datatypes.html
https://hl7.org/fhir/R4/exchange-module.html

National Resource Centre for EHR Standards (NRCeS)
© Centre for Development of Advanced Computing, Pune Page 9 of 24

BUNDLE

A FHIR Bundle is a structured container that holds a collection of related
resources. It is used for grouping multiple healthcare resources, making it easier
to transport them as a single unit. Bundles are commonly used in healthcare data
exchange, allowing different resources, like patient records or clinical documents,
to be transmitted together.

In ABDM, Health Information Types (HI Types/Clinical Artefacts) that represent

discrete documents essential for continuity of care are defined using FHIR Bundle

with ‘type’ as ‘Document’. However, the information needed for various claim

processing workflows is represented using FHIR Bundle with the ‘type’ as

‘Collection’.

Use of Bundle with ‘type’ as ‘Document’

The FHIR Bundle type ‘Document’ is used to represent clinical artifacts that are

discrete and self-contained documents, crucial for maintaining continuity of care

in the healthcare system.

 How it works

• A Bundle contains a Composition resource as its first entry. This

Composition serves as the root or header, summarizing the overall

document structure.

• The other resources within the Bundle are referenced by the

Composition, such as Patient, Practitioner, Observation, etc.

• The Bundle ensures that the document, along with its related resources,

is exchanged as a cohesive unit.

Example Use Case

A diagnostic report that includes the test results, interpretation, and

conclusion. This information is structured using various FHIR

resources (e.g. Patient, Diagnostic Report, Observation) and grouped

within a Bundle as a document.

Use of Bundle with ‘type’ as ‘Collection’

The FHIR Bundle type ‘Collection’ is used to represent sets of related resources in

a single package for ease of distribution. A ‘Collection’ Bundle functions to organize

resources relevant to a specific workflow.

Example Use Case

A healthcare claim submission that includes details about the patient,

services provided, diagnosis, and associated costs. This information is

structured using various FHIR resources (e.g., Claim, Patient, Coverage,

Practitioner, Procedure, Condition) and grouped within a Bundle of type

‘Collection’ to represent the complete claim request.

National Resource Centre for EHR Standards (NRCeS)
© Centre for Development of Advanced Computing, Pune Page 10 of 24

Key Elements of a FHIR Bundle resource

• Bundle.type: Defines the purpose of the bundle, indicating how it

should be processed (e.g., ‘document’, ‘collection’).

• Bundle.timestamp: The exact date and time when the bundle was

created. It ensures accurate tracking of when the information within

the bundle was assembled.

• Bundle.identifier: A unique value that distinguishes a specific Bundle

from others, ensuring it can be identified across systems. It plays a key

role in maintaining data integrity and traceability in healthcare

exchanges.

• Bundle.entry: Each entry in a Bundle represents an individual

resource that is part of the overall collection. A Bundle may contain one

or more entries, depending on how many resources are being grouped.

Each entry consists of several components:

▪ Full URL: A reference to the specific resource, often providing a

resolvable URL where the resource can be accessed.

▪ Resource: The actual FHIR resource (e.g., Patient, Observation,

or Encounter) that is being included in the Bundle.

Refer: Bundle - FHIR v4.0.1 (hl7.org)

FHIR IMPLEMENTATION GUIDE

FHIR Implementation Guide (IG) is a document that provides specific guidelines

on how to implement the HL7 Fast Healthcare Interoperability Resources (FHIR)

standard in a particular healthcare context or for a specific use case. It describes

how the standard should be applied, customized, or extended for particular needs,

ensuring interoperability and consistency in implementations across different

systems.

Typically, a FHIR Implementation Guide contains:

• Profile: Customized versions of standard FHIR resources that specify

constraints, extensions, and usage guidelines for the particular context.

• Extension: Custom fields or data points added to FHIR resources that

aren't covered by the base standard.

• ValueSet: Defined sets of allowable codes or terminologies (such as ICD,

SNOMED CT) that can be used in certain elements of FHIR resources.

• Example: Sample FHIR resource instances to demonstrate correct usage.

• Narrative and Guidance: Detailed explanations about how and why

certain decisions were made, and how the FHIR resources should be used

together.

By following an IG, healthcare organizations ensure that their systems are capable

of exchanging information in a standardized manner, promoting interoperability.

https://hl7.org/fhir/R4/bundle.html

National Resource Centre for EHR Standards (NRCeS)
© Centre for Development of Advanced Computing, Pune Page 11 of 24

FHIR Implementation Guide for Ayushman Bharat Digital Mission

The FHIR Implementation Guide for ABDM is built on FHIR Version R4 (4.0.1), it

establishes the minimum conformance requirements for accessing health data to

ensure continuity of care in ABDM. This guide defines the essential health record

artifacts to be captured and exchanged in line with the ABDM.

It references key standards and coding systems from the National Digital Health

Blueprint (NDHB), EHR Standards for India (2016), and regulatory bodies like the

Medical Council of India (MCI), Pharmacy Council of India (PCI), and Health Claim

Exchange Platform (NHCX).

Refer: Home - FHIR Implementation Guide for ABDM

Reading FHIR Profiles

The ABDM FHIR Implementation Guide includes several profiles to capture and

exchange health data. Understanding how to read and interpret these profiles is

essential for developers and healthcare providers. Below are key concepts to help

understand ABDM FHIR profiles:

1. Statistics/References

• Provides a human-readable summary of changes made to the base

FHIR resources. It refers to the Differential View, showing which

elements have been modified, constrained, or extended in the profile.

2. Differential View

• The Differential View lists the specific changes applied to the FHIR

resource while creating a profile. This includes constraints, extensions,

and customizations tailored for ABDM.

• Only the modified elements are displayed, making it easier for

implementers to focus on what has been changed from the standard

FHIR resource.

3. Mandatory Element

• Elements with cardinality ‘1..1’ or ‘1..*’ are mandatory and must always

be present in the resource. These elements are critical for the proper

functioning of the data exchange and cannot be omitted.

4. Must Support

• ‘MUST Support’ elements are optional to include but must be

supported by receiving systems. The Healthcare Information User

(HIU) must be able to process these elements if present, while the

Healthcare Information Provider (HIP) can choose whether to

include them. This ensures that systems can handle optional data when

available.

https://nrces.in/ndhm/fhir/r4/index.html

National Resource Centre for EHR Standards (NRCeS)
© Centre for Development of Advanced Computing, Pune Page 12 of 24

Refer: Formats - FHIR v4.0.1 (hl7.org)

FHIR Profiles for ABDM

The ABDM artifacts aim to cover a wide range of health record document sharing

within care settings. These artifacts ensure comprehensive data capture and

exchange to support continuity of care. This includes 07 Clinical Artifacts, 01

Billing Artifacts, 38 Core Profiles, 42 Terminology ValueSets, and 92 examples.

Refer: ABDM Profiles - FHIR Implementation Guide for ABDM

FHIR Profiles for NHCX

The NHCX artifacts are designed to facilitate standardized and efficient exchange

of health claim-related information among payers, providers, beneficiaries, and

other stakeholders. These artifacts support a range of processes related to health

https://hl7.org/fhir/R4/formats.html#table
https://nrces.in/ndhm/fhir/r4/profiles.html

National Resource Centre for EHR Standards (NRCeS)
© Centre for Development of Advanced Computing, Pune Page 13 of 24

claims, including eligibility checks, pre-authorization requests, claims

submissions, and payment notifications. They ensure that data is exchanged in an

interoperable, machine-readable, and auditable format, promoting accurate and

timely processing of health claims. This includes 06 Health Claim Artifacts, 11 Core

Profiles, 10 CodeSystem 17 ValueSets, and 51 examples.

Refer: NHCX Profiles - FHIR Implementation Guide for ABDM

https://nrces.in/ndhm/fhir/r4/hcx-profile.html

National Resource Centre for EHR Standards (NRCeS)
© Centre for Development of Advanced Computing, Pune Page 14 of 24

IMPLEMENTING AND VALIDATING FHIR USING JAVA

This document provides a comprehensive guide for creating and validating FHIR

resources programmatically using Java. We will use the HAPI FHIR library, a

popular choice for working with FHIR in Java.

HAPI FHIR Library

The HAPI FHIR library is an open-source Java framework that simplifies the

process of working with FHIR (Fast Healthcare Interoperability Resources)

resources. It provides comprehensive support for creating, manipulating,

validating, serializing, and parsing FHIR resources.

Refer: HAPI FHIR - The Open Source FHIR API for Java

Key Features of HAPI FHIR Library

• Complete FHIR Support: HAPI FHIR offers full support for all FHIR

resource types. This includes creating, validating, serializing, and parsing

each resource, ensuring compliance with FHIR standards.

• Built-in Validators: The library includes a robust validation framework

that checks FHIR resources against the FHIR specification. You can validate

resources using predefined profiles, custom profiles, or specific rules.

• Serialization & Parsing: The library provides seamless serialization and

deserialization capabilities for FHIR resources in both JSON and XML

formats. The parsing functions convert the structured data into Java objects

for easy manipulation.

• Extensive Resource Coverage: The library contains Java classes

representing every resource in the FHIR specification, such as Patient,

Practitioner

 HAPI FHIR Dependencies

• hapi-fhir-structures-r4: This library provides Java classes and structures

for all FHIR R4(4.0.1) resources, enabling the creation and manipulation of

FHIR resources in Java applications.

• hapi-fhir-validation: This module performs validation of FHIR resources

against standard and custom FHIR profiles, ensuring that the resources

conform to the specified FHIR rules and constraints.

• hapi-fhir-validation-resources-r4: This library includes predefined

resources and profiles required for validating specific FHIR R4 ensuring

proper compliance with FHIR.

https://hapifhir.io/

National Resource Centre for EHR Standards (NRCeS)
© Centre for Development of Advanced Computing, Pune Page 15 of 24

Creating FHIR Resources Programmatically

Prerequisites

Before you start, ensure you have:

• Java Development Kit (JDK): Ensure JDK 11 or higher is installed.

• Integrated Development Environment (IDE): Use an IDE like

IntelliJ IDEA or Eclipse.

Setting Up the Development Environment

✓ Add HAPI FHIR Dependency

Add the HAPI FHIR dependency to your ‘pom.xml’ file if you are

using Maven

<!-- https://mvnrepository.com/artifact/ca.uhn.hapi.fhir/hapi-fhir-structures-r4 -->
<dependency>
 <groupId>ca.uhn.hapi.fhir</groupId>
 <artifactId>hapi-fhir-structures-r4</artifactId>
 <version>6.4.3</version>
</dependency>

<!-- https://mvnrepository.com/artifact/ca.uhn.hapi.fhir/hapi-fhir-validation -->
<dependency>
 <groupId>ca.uhn.hapi.fhir</groupId>
 <artifactId>hapi-fhir-validation</artifactId>
 <version>6.4.3</version>
</dependency>

<!-- https://mvnrepository.com/artifact/ca.uhn.hapi.fhir/hapi-fhir-validation-
resources-r4-->
<dependency>
 <groupId>ca.uhn.hapi.fhir</groupId>
 <artifactId>hapi-fhir-validation-resources-r4</artifactId>
 <version>6.4.3</version>
</dependency>

Alternatively, if using Gradle, add the following to your build.gradle:

// https://mvnrepository.com/artifact/ca.uhn.hapi.fhir/hapi-fhir-structures-r4
implementation group: 'ca.uhn.hapi.fhir', name: 'hapi-fhir-structures-r4', version: '6.4.3'

// https://mvnrepository.com/artifact/ca.uhn.hapi.fhir/hapi-fhir-validation
implementation group: 'ca.uhn.hapi.fhir', name: 'hapi-fhir-validation', version: '6.4.3'

// https://mvnrepository.com/artifact/ca.uhn.hapi.fhir/hapi-fhir-validation-
resources-r4
implementation group: 'ca.uhn.hapi.fhir', name: 'hapi-fhir-validation-resources-r4',
version: '6.4.3'

✓ Set Up the Project

 Create a new Java project in your IDE and configure it to include the

HAPI

https://mvnrepository.com/artifact/ca.uhn.hapi.fhir/hapi-fhir-structures-r4
https://mvnrepository.com/artifact/ca.uhn.hapi.fhir/hapi-fhir-validation
https://mvnrepository.com/artifact/ca.uhn.hapi.fhir/hapi-fhir-validation-resources-r4
https://mvnrepository.com/artifact/ca.uhn.hapi.fhir/hapi-fhir-validation-resources-r4
https://mvnrepository.com/artifact/ca.uhn.hapi.fhir/hapi-fhir-structures-r4
https://mvnrepository.com/artifact/ca.uhn.hapi.fhir/hapi-fhir-validation
https://mvnrepository.com/artifact/ca.uhn.hapi.fhir/hapi-fhir-validation-resources-r4
https://mvnrepository.com/artifact/ca.uhn.hapi.fhir/hapi-fhir-validation-resources-r4

National Resource Centre for EHR Standards (NRCeS)
© Centre for Development of Advanced Computing, Pune Page 16 of 24

Creating Resource

This section outlines the basic steps involved in creating a FHIR resource using
Java. The process involves defining, populating, and serializing the resource.

1. Define the Resource: This step involves instantiating the specific FHIR

resource. Each FHIR resource (e.g., Patient, Bundle, Observation)

represents a particular element in the healthcare data model.

• Use the HAPI FHIR library to create a new instance of the required

resource.

// Define a Patient resource
Patient patient = new Patient();

2. Populate the Resource: Once the resource is defined, populate it with

appropriate values. This includes setting the attributes, identifiers, names,

dates, and other elements in line with the FHIR specification.

• Use setter methods provided by the library to populate attributes.

Make sure to include mandatory fields and ensure data consistency.

// Populate patient resource with details
patient.addIdentifier()
 .setSystem("http://hospital.org/patients")

 .setValue("12345");
patient.addName().setText("ABC");
patient.setGender(AdministrativeGender.MALE);
patient.setBirthDateElement(new DateType("2024-01-01"));

3. Serialize the Resource: After populating the resource, the next step is to

serialize it into a format that can be shared or stored. FHIR resources are

typically serialized in either JSON or XML formats.

• Use the HAPI FHIR library's serialization functionality to convert

the resource into a desired format (JSON or XML).

// Serialize the resource to JSON format
FhirContext ctx = FhirContext.forR4();
String serializedResource = ctx.newJsonParser()
 .setPrettyPrint(true)
 .encodeResourceToString(patient);

• Also serialize the resource to XML if required:

// Serialize the resource to XML format
String serializedResourceXml = ctx.newXmlParser()
 .setPrettyPrint(true)
 .encodeResourceToString(patient);

National Resource Centre for EHR Standards (NRCeS)
© Centre for Development of Advanced Computing, Pune Page 17 of 24

Patient Resource in Java and JSON Representation

The below image demonstrates how to define and populate a Patient resource in
Java, along with its corresponding JSON output after serialization. The Java code
example highlights the creation of the resource, while the JSON representation
shows the final structured data format that adheres to the FHIR specification.

public static Patient populatePatientResource() {
Patient patient = new Patient();
patient.setId("b7bb7467-0f45-4a86-a1e0-
ca6a7c116f5f");
patient.getMeta()
 .addProfile("https://nrces.in/ndhm/fhir/r4/
StructureDefinition/Patient");
patient.addIdentifier()
 .setType(
 new CodeableConcept(
 new Coding(
 "https://nrces.in/ndhm/fhir/r4/CodeSystem
/ndhm-identifier-type-code",
 "ADN",
 "Adhaar number")))
 .setSystem("https://uidai.gov.in/")
 .setValue("7225-4829-5255");
patient.addName()
 .setText("ABC");
patient.setGender(AdministrativeGender.MALE)
 .setBirthDateElement(
 new DateType("1981-01-12"));
 return patient;
}

{
 "resourceType" : "Patient",
 "id" : "b7bb7467-0f45-4a86-a1e0-ca6a7c116f5f",
 "meta" : {
 "profile" :
["https://nrces.in/ndhm/fhir/r4/StructureDefiniti
on/Patient"]
 },
 "identifier" : [{
 "type" : {
 "coding" : [{
 "system" :
"https://nrces.in/ndhm/fhir/r4/CodeSystem/ndh
m-identifier-type-code",
 "code" : "ADN",
 "display" : "Adhaar number"
 }]
 },
 "system" : "https://uidai.gov.in/",
 "value" : "7225-4829-5255"
 }],
 "name" : [{
 "text" : "ABC"
 }],
 "gender" : "male",
 "birthDate" : "1981-01-12"
}

Patient Resource in Java Patient Resource in Java

Creating FHIR Bundles Programmatically in ABDM and NHCX

FHIR Bundles can group resources together for specific workflows. In ABDM and
NHCX, bundles are categorized based on their type, either Document (used for
clinical workflows) or Collection (used for administrative workflows like claim
processing). Below is a guide on how to create these types of bundles in Java,
leveraging the HAPI FHIR library.

Creating a Document Bundle for ABDM

In the context of ABDM, FHIR Bundles of type ‘Document’ are used to represent
clinical documents. The Composition resource serves as the first entry and acts as
the header for the document, Composition provides essential structure and
context, including details such as the author, date of creation, and overall clinical
narrative. This structure links all the resources within the document, creating a
clear and meaningful representation of the healthcare data. For example, in a
Diagnostic Report, the Composition organizes and presents the diagnostic findings
along with related information.

• Bundle Type: Document
• First Entry: Always a Composition resource.

National Resource Centre for EHR Standards (NRCeS)
© Centre for Development of Advanced Computing, Pune Page 18 of 24

// Creating a Diagnostic Report Bundle for ABDM
Bundle diagnosticReportBundle = new Bundle();

// Set logical id of this artifact
diagnosticReportBundle.setId("DiagnosticReport-Imaging-DCM-example-01");

// Set metadata about the resource
Meta meta = diagnosticReportBundle.getMeta();
meta.addProfile("https://nrces.in/ndhm/fhir/r4/StructureDefinition/DocumentBundle");
diagnosticReportBundle.setMeta(meta);

// Set Bundle Type
diagnosticReportBundle.setType(BundleType.DOCUMENT);

// Adding Composition as the first entry
BundleEntryComponent compositionEntry = new BundleEntryComponent();
compositionEntry.setFullUrl("urn:uuid:df810c39-55e7-441c-8569-d6ab77aa1c66");
compositionEntry.setResource(populateDiagnosticReportRecordDCMCompositionResource());

// Adding additional entries (e.g., Patient, Practitioner, etc.)
BundleEntryComponent patientEntry = new BundleEntryComponent();
patientEntry.setFullUrl("urn:uuid:1efe03bf-9506-40ba-bc9a-80b0d5045afe");
patientEntry.setResource(populatePatientResource());

diagnosticReportBundle.addEntry(compositionEntry);
diagnosticReportBundle.addEntry(patientEntry);

// Adding more resources as necessary (Practitioner, ImagingStudy, etc.)

Creating a Collection Bundle for NHCX

In NHCX, bundles of type ‘Collection’ are used for administrative purposes such as
health claim processing, they group related resources (like Claim, Coverage,
Patient) for processing workflows.

• Bundle Type: Collection.

// Creating a Claim Bundle for NHCX
Bundle claimBundle = new Bundle();

// set Id - Logical id of this artifact
claimBundle.setId("ClaimBundle-preauth-example-01");

// set Meta - Metadata about the resource
Meta meta = new Meta();
meta.addProfile("https://nrces.in/ndhm/fhir/r4/StructureDefinition/ClaimBundle");
claimBundle.setMeta(meta);

//set Identifier
claimBundle.setIdentifier(new Identifier(). setSystem("http://hip.in").
 setValue("bc3c6c57-2053-4d0e-ac40-139ccccff645"));

// set Type - collection
claimBundle.setType(BundleType.COLLECTION);

// Adding entries for claim-related resources
BundleEntryComponent claimEntry = new BundleEntryComponent();
claimEntry.setFullUrl("urn:uuid:4776dbdf-d596-4cd1-9966-9d44ae9dec0b");
claimEntry.setResource(ResourcePopulator.populateClaimSettlementResource());

BundleEntryComponent patientEntry = new BundleEntryComponent();
patientEntry.setFullUrl("urn:uuid:1efe03bf-9506-40ba-bc9a-80b0d5045afe");
patientEntry.setResource(ResourcePopulator.populatePatientResource());

claimBundle.addEntry(claimEntry);
claimBundle.addEntry(patientEntry);

// Adding more resources as necessary (Coverage, Organization, etc.)

National Resource Centre for EHR Standards (NRCeS)
© Centre for Development of Advanced Computing, Pune Page 19 of 24

Common Pitfalls in Creating FHIR Bundles

When implementing FHIR bundles, it's essential to adhere to specific rules and
best practices to ensure the bundle is correctly structured and conforms to the
required profiles. Below are common pitfalls to watch out for when creating
bundles, especially in the context of ABDM and NHCX.

1. Incorrect Resource Format: Ensure that each resource within the bundle
adheres strictly to the FHIR Specification Version R4, including the required
structure, data types, and relationships. Use built-in FHIR validators to check that
the resources are correctly formatted. For example, when creating a Patient
resource, ensure that fields such as name and identifier are properly structured
according to FHIR rules.

2. Missing Required Fields: In the ABDM and NHCX profiles, certain elements are
mandatory. A common issue occurs when these required fields are missing, which
can result in improper processing of the bundle. Ensure that all mandatory
elements, as defined by the cardinality in FHIR profiles (e.g., 1..1 or 1..*), are
included when creating the resource.

3. Invalid Data Types: Ensure that the data types used for each element conform
to the FHIR Specification Version R4. Incorrect data types, such as using a string
instead of an integer, can cause validation errors.

4. Profile Violations and Missing ‘meta.profile’ Element: All resources should
comply with specific FHIR profile constraints, including properly populating the
‘meta.profile’ element with the appropriate canonical URL of the profile. This
applies to every resource, including the bundle itself.

5. Use of ‘urn:uuid’ in fullUrl: When referencing resources within a bundle, the
fullUrl element should use the ‘urn:uuid’ format, which ensures each resource is
uniquely identified within the bundle. The correct format is urn:uuid:<unique-id>,
where <unique-id> is the UUID of the resource.

6. Incorrect System URL in CodeableConcept: For any element of the data type
CodeableConcept, ensure that the correct coding system URL is specified in the
coding.system element. It is recommended to select the code and display values
from the bound value sets to ensure consistency and avoid potential issues during
validation or data exchange.

Validating FHIR Resources

Validation Tools

1. HAPI FHIR Validator: A built-in validation tool in HAPI FHIR library.

• URL: HAPI FHIR Validator

2. FHIR Validator CLI: Command-line interface for FHIR validation.

• URL: FHIR Validator CLI

3. FHIR GUI Validator:

• URL: FHIR GUI Validator

https://hapifhir.io/hapi-fhir/docs/validation/instance_validator.html
https://github.com/hapifhir/org.hl7.fhir.core/releases/latest/download/validator_cli.jar
https://validator.fhir.org/

National Resource Centre for EHR Standards (NRCeS)
© Centre for Development of Advanced Computing, Pune Page 20 of 24

Validation Aspects

When validating a FHIR resource, several key aspects are checked to ensure

compliance with the FHIR specification:

1. Structure: Verifies that the resource conforms to the FHIR

specification, with no extra or undefined elements present.

2. Cardinality: Ensures that properties adhere to their defined

cardinality (minimum and maximum occurrences).

3. Value Domains: Confirms that property values match their data types

and enumerated codes are valid.

4. Coding/CodeableConcept Bindings: Validates that Coding or

CodeableConcept elements use correct system URL, codes and display

values as per required valuesets.

5. Invariant: Checks that all constraints or co-occurrence rules are

satisfied (e.g., if one field is present, another must also be present).

6. Profile: Ensures compliance with specific rules defined in FHIR

profiles (including those listed in the Resource.meta.profile, or

in CapabilityStatement, or in an ImplementationGuide, or otherwise

required by context)

7. Business Rules: Includes additional checks like duplicate detection,

reference resolution, and authorization validation.

These aspects ensure that FHIR resources are structurally sound and meet

both clinical and business requirements.

Refer: Validation - FHIR

 Validation Process

1. HAPI FHIR Validator: To validate a resource using the HAPI FHIR library,

following are the steps:

• Step 1: Load NPM Package

▪ Download the package.tgz containing all the Structure Definitions,

CodeSystems, and ValueSets from ABDM FHIR Implementation

Guide.

▪ Add package.tgz to the class path (“src/main/resource”)

▪ “package.tgz” is essential for validating resources against ABDM

and NHCX profiles and terminologies.

// Create NpmPackageValidationSupport instance
NpmPackageValidationSupport npmValidationSupport = new
NpmPackageValidationSupport(ctx);

// Load package from classpath
npmValidationSupport.loadPackageFromClasspath("classpath:package.tgz");

For more Information Refer: Instance Validator using package

https://www.hl7.org/fhir/R4/datatypes.html#Coding
https://www.hl7.org/fhir/R4/datatypes.html#CodeableConcept
https://www.hl7.org/fhir/R4/resource.html#Meta
https://www.hl7.org/fhir/R4/validation.html
https://nrces.in/ndhm/fhir/r4/package.tgz
https://nrces.in/ndhm/fhir/r4/index.html
https://nrces.in/ndhm/fhir/r4/index.html
https://hapifhir.io/hapi-fhir/docs/validation/instance_validator.html#packages

National Resource Centre for EHR Standards (NRCeS)
© Centre for Development of Advanced Computing, Pune Page 21 of 24

• Step 2: Setup a validation support chain

▪ Establish a validation support chain that incorporates the core FHIR

structure definitions. This chain includes FHIR StructureDefinition

and FHIR's built-in vocabulary (such as ValueSet and CodeSystem

resources).

▪ It involves an in-memory terminology service, module caching, and

support for validating codes with CodeSystems that are not

distributed as part of the FHIR specification.

// Create a chain that will hold our modules
ValidationSupportChain validationsupportchain = new ValidationSupportChain(
 npmValidationSupport, // NPM package support
 new DefaultProfileValidationSupport(ctx), // Default profile validation
 new InMemoryTerminologyServerValidationSupport(ctx), // Terminology validation
 new CommonCodeSystemsTerminologyService(ctx), // Common code system
 new SnapshotGeneratingValidationSupport(ctx) // Generate snapshots of
); StructureDefinitions
// Add caching layer on top of the validation chain
CachingValidationSupport validationSupport = new
CachingValidationSupport(validationsupportchain);

Refer: Validation Support Modules

• Step 3: Register validator and validate resource

// Initialize FHIR context for R4
FhirContext ctx = FhirContext.forR4();

// Declare FhirValidator and FhirInstanceValidator
FhirValidator validator;
FhirInstanceValidator fhirInstanceValidator;

// Initialize the validator
validator = ctx.newValidator();

// Set up FhirInstanceValidator with the validation support chain
fhirInstanceValidator = new FhirInstanceValidator(validationSupport);
validator.registerValidatorModule(fhirInstanceValidator);

// Validate a FHIR resource
ValidationResult outcome = validator.validateWithResult(resource);

// Print the overall validation outcome
System.out.println(outcome);

// Loop through and print individual validation messages
for (SingleValidationMessage next : outcome.getMessages()) {
System.out.println(next.getSeverity() + " - " + next.getLocationString() + " - " +
next.getMessage());
}

For more Information Refer: Instance Validator using package

https://hapifhir.io/hapi-fhir/docs/validation/validation_support_modules.html#validationsupportchain
https://hapifhir.io/hapi-fhir/docs/validation/instance_validator.html#packages

National Resource Centre for EHR Standards (NRCeS)
© Centre for Development of Advanced Computing, Pune Page 22 of 24

2. FHIR Validator CLI: To validate a resource using the JAR file provided by

HL7, use following command:

“java -jar <path to validator_cli.jar> <file_name> -ig ndhm.in#<ig-version>”

For Documentation refer: Using the FHIR Validator - FHIR - Confluence (hl7.org)

3. FHIR GUI Validator

• Navigate to https://validator.fhir.org

• Add Implementation Guide

▪ Step1: Click on the "Options" tab

▪ Step2: Select the implementation guide "ndhm.in"

▪ Step3: Choose the latest version from the dropdown.

▪ Step4: Click on the “Add” button to add IG.

• Validation process

https://confluence.hl7.org/display/FHIR/Using+the+FHIR+Validator
https://validator.fhir.org/

National Resource Centre for EHR Standards (NRCeS)
© Centre for Development of Advanced Computing, Pune Page 23 of 24

▪ Step1: Paste the FHIR resource that need to be validated.

▪ Step2: Click on the "Validate" button to begin the validation process.

The validator will check the resource against the selected

implementation guide and provide feedback on any errors or

warnings.

IMPLEMENTATION REFERENCE

• Implementation Guide

▪ HL7 : Index - FHIR v4.0.1 (hl7.org)

▪ ABDM : Home - FHIR Implementation Guide for ABDM

• Implementation Libraries

▪ Java : HAPI FHIR - The Open Source FHIR API for Java

▪ C# : Firely .NET SDK | The official .NET SDK for HL7 FHIR

▪ JavaScript : fhir-kit-models-npm (npmjs.com)

▪ Typescript : ts-fhir-types - npm (npmjs.com)

▪ Additional : Open Source Implementations - FHIR - Confluence

• Tool

▪ Validator cli : Using the FHIR Validator - FHIR - Confluence

• Schema

▪ JSON : JSON Schema

• Usage Sample

▪ Java : Usage Sample code – JAVA

▪ .NET : Usage Sample code - DOTNET

https://hl7.org/fhir/r4/index.html
https://nrces.in/ndhm/fhir/r4/index.html
https://hapifhir.io/
https://docs.fire.ly/projects/Firely-NET-SDK/en/latest/
https://www.npmjs.com/package/fhir-kit-models
https://www.npmjs.com/package/@ahryman40k/ts-fhir-types
https://confluence.hl7.org/pages/viewpage.action?pageId=35718838#OpenSourceImplementations-Javascript
https://confluence.hl7.org/display/FHIR/Using+the+FHIR+Validator
https://hl7.org/fhir/r4/fhir.schema.json.zip
https://nrces.in/download/files/zip/abdm-fhir-r4-usage-samples-java.zip
https://nrces.in/download/files/zip/abdm-fhir-r4-usage-samples-dotnet.zip

National Resource Centre for EHR Standards (NRCeS)
© Centre for Development of Advanced Computing, Pune Page 24 of 24

 ANNEXURE: FHIR Bundles utilized by each NHCX API based on specific
Use Cases

S.N.
Use Case API End Point Flow

FHIR Bundle

1
Coverage

Eligibility

/coverageeligibility/

check
provider->NHCX->payer

CoverageEligibiltyRe

questBundle

2
Coverage

Eligibility

/coverageeligibility/

on_check
payer->NHCX->provider

CoverageEligibiltyRe

sponseBundle

3 Preauthorization /preauth/submit provider->NHCX->payer
ClaimBundle

4 Preauthorization /preauth/on_submit payer->NHCX->provider
ClaimResponseBund

le

5 Predetermination
/predetermination/

submit
provider->NHCX->payer

ClaimBundle

6 Predetermination
/predetermination/

on_submit
payer->NHCX->provider

ClaimResponseBund

le

7 Claim /claim/submit provider->NHCX->payer ClaimBundle

8 Claim /claim/on_submit payer->NHCX->provider
ClaimResponseBund

le

9

Request

Additional

Attachments

/communication/

request
payer->NHCX->provider

TaskBundle

10 Send Attachments
/communication/

on_request
provider->NHCX->payer

TaskBundle

11 Payment
/paymentnotice/

request
payer->NHCX->provider

TaskBundle

12 Payment
/paymentnotice/

on_request
provider->NHCX->payer

TaskBundle

13 Search /search/submit NHA->NHCX->Payer TaskBundle

14 Search /search/on_submit payer->NHCX->NHA TaskBundle

15 Reprocess /task/submit provider->NHCX->payer TaskBundle

16 Reprocess /task/on_submit payer->NHCX->provider TaskBundle

17 Status Check /hcx/status
provider->NHCX,Payer-

>NHCX

NA

18 Status Check /NHCX/on_status
provider->NHCX,Payer-

>NHCX

NA

https://nrces.in/ndhm/fhir/r4/StructureDefinition-CoverageEligibilityRequestBundle.html
https://nrces.in/ndhm/fhir/r4/StructureDefinition-CoverageEligibilityRequestBundle.html
https://nrces.in/ndhm/fhir/r4/StructureDefinition-CoverageEligibilityResponseBundle.html
https://nrces.in/ndhm/fhir/r4/StructureDefinition-CoverageEligibilityResponseBundle.html
https://nrces.in/ndhm/fhir/r4/StructureDefinition-ClaimBundle.html
https://nrces.in/ndhm/fhir/r4/StructureDefinition-ClaimResponseBundle.html
https://nrces.in/ndhm/fhir/r4/StructureDefinition-ClaimResponseBundle.html
https://nrces.in/ndhm/fhir/r4/StructureDefinition-ClaimBundle.html
https://nrces.in/ndhm/fhir/r4/StructureDefinition-ClaimResponseBundle.html
https://nrces.in/ndhm/fhir/r4/StructureDefinition-ClaimResponseBundle.html
https://nrces.in/ndhm/fhir/r4/StructureDefinition-ClaimBundle.html
https://nrces.in/ndhm/fhir/r4/StructureDefinition-ClaimResponseBundle.html
https://nrces.in/ndhm/fhir/r4/StructureDefinition-ClaimResponseBundle.html
https://nrces.in/ndhm/fhir/r4/StructureDefinition-TaskBundle.html
https://nrces.in/ndhm/fhir/r4/StructureDefinition-TaskBundle.html
https://nrces.in/ndhm/fhir/r4/StructureDefinition-TaskBundle.html
https://nrces.in/ndhm/fhir/r4/StructureDefinition-TaskBundle.html
https://nrces.in/ndhm/fhir/r4/StructureDefinition-TaskBundle.html
https://nrces.in/ndhm/fhir/r4/StructureDefinition-TaskBundle.html
https://nrces.in/ndhm/fhir/r4/StructureDefinition-TaskBundle.html
https://nrces.in/ndhm/fhir/r4/StructureDefinition-TaskBundle.html

